SimpleCSV Package

Version 2.3
February 2018

Gray Watson

This manual is licensed by Gray Watson under the Creative Commons Attribution-Share
Alike 3.0 License.

Permission is granted to make and distribute verbatim copies of this manual provided this
license notice and this permission notice are preserved on all copies.

Table of Contents

SImpleCSV i e
1 Start Using Quickly
2 Using SimpleCSV
2.1 Downloading Jar................ i
2.2 Using With Maven
2.3 CsvColumn Annotation........................cououn....
3 Example Code................ciiiia....
4 Open Source License................cc0v...

Index of Concepts................ccinna...

SimpleCSV 1 23 February 2018

SimpleCSV

Version 2.3 — February 2018

This package provides some Java classes to help with the reading and writing of CSV
(Comma Separated Values) files.

To get started quickly using SimpleCSV, see Chapter 1 [Quick Start], page 2. You
can also take a look at the examples section of the document which has various working
code packages. See Chapter 3 [Examples|, page 5. There is also a HTML version of this
documentation.

Gray Watson http://256.com/gray/

http://256.com/sources/simplecsv/docs/simplecsv.html
http://256.com/sources/simplecsv/docs/simplecsv.html
http://256.com/gray/

Chapter 1: Start Using Quickly 2 23 February 2018

1 Start Using Quickly

To use SimpleCSV you need to do the following steps. For more information, see Chap-
ter 2 [Using], page 3.
1. Download SimpleCSV from the SimpleCSV release page. See Section 2.1 [Download-
ing], page 3.
2. Add @CsvColumn annotation to each of the fields or get/set method that you want to
write and read to/from CSV files. See Section 2.3 [CsvColumn Annotation], page 3.

public class Account {
@CsvColumn
private String name;

public class Account {
@CsvColumn
private String getName() {
return name;
}
@CsvColumn

private void setName(String name) {
this.name = name;
}

3. Create a CsvProcessor utility class for the entity.

CsvProcessor<Account> processor =
new CsvProcessor<Account>(Account.class);
4. Write a collection of Account entities to disk in CSV format.
processor.writeAll(new File("accounts.csv"),
accounts, true /* write header */);
5. Read in from a CSV file and get a collection of Accounts:
List<Account> accounts =
processor.readAll (new File("accounts.csv"),
true /* first line header */,
true /* validate header */,
null /* used to record parse errors */);

For more extensive instructions, see Chapter 2 [Using|, page 3.

http://256.com/sources/simplecsv/releases/

Chapter 2: Using SimpleCSV 3 23 February 2018

2 Using SimpleCSV

2.1 Downloading Jar

To get started with SimpleCSV, you will need to download the jar file. The SimpleCSV
release page is the default repository but the jars are also available from the central maven
repository.

The code works with Java 6 or later.

2.2 Using With Maven

To use SimpleCSV with maven, include the following dependency in your ‘pom.xml’ file:

<dependency>
<groupId>com.j256.simplecsv</groupld>
<artifactId>simplecsv</artifactId>
<version>2.3</version>

</dependency>

2.3 CsvColumn Annotation

The @CsvColumn annotation is used to mark the fields in your entity that you want to
write to and read from CSV files as a column. It also allows you to customize the output
format and other details for the particular field instance. The following fields from the
annotation can be used:

columnName
This allows you to override and set a column name for the field. By default it
will use the field name. This column name is used when you are generating and
validating the header line.

mustNotBeBlank
Set to true if a value in the column is required. This means that it cannot be
empty when it is being read in and a parse error or exception will be generated.

trimInput
Set to true if you want the column read from the line to be trimmed (using
String.trim()) before it is converted to Java. This may not be applicable to
all field types.

format

Sets the format for this column. Not all types use the format specifier. Take
a look at the particular converter class javadocs for more particulars. The
default format tends to be the toString() of the type, and (for example) the
java.text.DecimalFormat class is used to override for numbers.

http://256.com/sources/simplecsv/releases/
http://256.com/sources/simplecsv/releases/
http://repo1.maven.org/maven2/com/j256/simplecsv/
http://repo1.maven.org/maven2/com/j256/simplecsv/

Chapter 2: Using SimpleCSV 4 23 February 2018

converterFlags
Optional flags for the converter which adjust the output. The flags that are
used depend on the converter. See the converter Javadocs for more information.
These need to be constants that are added together. For example,

@CsvColumn(converterFlags = XxxConverter.FLAGl + XxxConverter.FLAG2)]
private Xxx dollarAmount;

converterClass
Sets the converter to use to convert this column if you don’t want to use the
default appropriate internal class. This will construct and instance of the class
for this particular field. If you want to use a singleton then you should register
the type using CsvProcessor.registerConverter(...). This converter class
must have a public no-arg constructor.

defaultValue
Set this to a default string for the column. If the column is empty when read,
the value will be used instead. Default is the empty string.

mustBeSupplied
Set to false if a column is optional and can be skipped in the input altogether.
If this is false then the column doesn’t have to be in the header or the lines at
all. Default is true.

WARNING: If you are using optional ordering, the same CsvProcessor cannot
be used with multiple files at the same time since the column lists can be
dynamic depending on the input file being read.

afterColumn
Used to set the order of the columns by setting the column-name that this
column comes after. If this is not specified then the order in which the fields
and methods are discovered in the classes will determine their order in the
CSV file. If two fields say they come after the same field then you will get an
undefined order. If there is an loop in the after columns then an exception will
be thrown.

Here’s some examples of how to use the @CsvColumn annotation.

Override the column name:

0CsvColumn(columnName = "Account Number")
private long number;

Change the column input/output format. This will display the amount as $1,231.00
or ($2,000,000.28).

@CsvColumn(columnName = "Amount", format = "$###,##0.00; ($###,##0.00)")
private double amount;

Specifying a custom converter class for an object that you have defined.

@CsvColumn(columnName = "Gender", converterClass = GenderConverter.class)ll
private Gender gender;

Chapter 3: Example Code 5 23 February 2018

3 Example Code

Here is some example code to help you get going with SimpleCSV. I often find that code
is the best documentation of how to get something working. Please feel free to suggest
additional example packages for inclusion here. Source code submissions are welcome as
long as you don’t get piqued if we don’t chose your’s.

Simple, basic
This is a simple application which publishes a single object. See the source
code on github.

http://256.com/sources/simplecsv/docs/example-simple
http://256.com/sources/simplecsv/docs/example-simple

Chapter 4: Open Source License 6 23 February 2018

4 Open Source License

This document is part of the SimpleCSV project.

Permission to use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted, provided that this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUEN-
TIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLI-
GENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The author may be contacted via the SimpleCSV home page.

http://256.com/sources/simplecsv/

Index of Concepts 7 23 February 2018

Index of Concepts

Q@ I

QCsvColumn 3 introduction.............. 1

A L

AULNOT .« o o v oo e 1 license ... 6
blank columnscoveeiinieaann... 3 Maven, use with ... 3

must be supplied 4
C must not be blank 3
code examples 5 O
column format................ 3 . .

open source license. 6
columnname.............. 3 .

optional columns 4
columnorder........... ... 4

order of the columns 4
converter flags....... ... L 3
converter, custom............ 4
CsvColumn annotation........................ 3 P
custom converter L. 4

pom.xml dependency.......................... 3
custom header name 3

ickstart 2

default value 4 duici star
downloading the jars.......................... 3

R

E required columns 3

examples of code............ 5

S

F SIMPle CSV ..ottt 1

simple example oL 5
format of column 3

G T

trim columns 3
getting started............ 2

U
H using SimpleCSV 3
header name 3
how to download the jars...................... 3 W
how to get started 2

howtouse....... ... 3 where to get new jars 3

	SimpleCSV
	Start Using Quickly
	Using SimpleCSV
	Downloading Jar
	Using With Maven
	CsvColumn Annotation

	Example Code
	Open Source License
	Index of Concepts

