SimpleMetrics Package

Version 1.8
October 2017

Gray Watson




This manual is licensed by Gray Watson under the Creative Commons Attribution-Share
Alike 3.0 License.

Permission is granted to make and distribute verbatim copies of this manual provided this
license notice and this permission notice are preserved on all copies.



Table of Contents

SimpleMetrics . ...
1 Start Using Quickly ........................

2 Using SimpleMetrics.......................

2.1 Downloading Jar................ i
2.2 Creating a MetricsManager Instance......................
2.3 Using a Metrics Persister .......... ... . ... ... . ...
2.4 Creating and Registering Metrics.........................
2.5 Updating Metric Values............ ... ... . ... ......
2.6 Using the Built-In Utilities................. ... . ........
2.7 Publishing Metrics Via JMX ........ ... ... . ... ..
2.8 Using With Maven ......... ... ... . ... . ...

3 Open Source License.......................

Index of Concepts...............coivvna...



SimpleMetrics 1 9 October 2017

SimpleMetrics

Version 1.8 — October 2017

This package provides some simple metrics and associated operations that allow for
the recording of application metrics and persisting them to various different local or cloud
storage/metric systems. You code registers metrics and then doesn’t have to not worry
about how they are managed or persisted.

To get started quickly using SimpleMetrics, see Chapter 1 [Quick Start], page 2. There
is also a HT'ML version of this documentation.

Gray Watson http://256.com/gray/


http://256.com/sources/simplemetrics/docs/simplemetrics.html
http://256.com/gray/

Chapter 1: Start Using Quickly 2 9 October 2017

1 Start Using Quickly

To use SimpleMetrics you need to do the following steps. For more information, see
Chapter 2 [Using], page 3.

1. Download SimpleMetrics from the SimpleMetrics release page. See Section 2.1 [Down-
loading], page 3.

2. Create an instance of the MetricsManager class which manages the metrics in our
application.

MetricsManager metricsManager = new MetricsManager();

3. Create a persister such as the LoggingMetricsPersister which, in this case, logs the
metrics and values to java.util.Logger. You may want to roll your own.

LoggingMetricsPersister persister =

new LoggingMetricsPersister();
metricsManager.setMetricValuesPersisters(

new MetricValuesPersister[] { persister 1});

4. Create at least one metric which monitors a particular application value, and register
it with the MetricsManager.

ControlledMetricAccum hitCounter =
new ControlledMetricAccum("example", null, "hits",
"number of hits to the cache", null);
metricsManager.registerMetric(hitCounter) ;

5. Possibly use the MetricsPersisterJob to start a background thread that calls
persist() on the MetricsManager every so often. Otherwise you will need to call
persist() on your own using some other mechanism.

// persist our metrics every minute (60000 millis)
MetricsPersisterJob persisterThread =
new MetricsPersisterJob(manager, 60000, 60000, true);

For somewhat more extensive instructions, see Chapter 2 [Using], page 3.


http://256.com/sources/simplemetrics/releases/

Chapter 2: Using SimpleMetrics 3 9 October 2017

2 Using SimpleMetrics

2.1 Downloading Jar

To get started with SimpleMetrics, you will need to download the jar file. The Simple-
Metrics release page is the default repository but the jars are also available from the central
maven repository. If you are using Maven, see Section 2.8 [Maven]|, page 5.

The code works with Java 6 or later.

2.2 Creating a MetricsManager Instance

The MetricsManager is the class which manages the metrics in the application, up-
dates the values of the metrics when necessary, and calls the persisters to save the metrics
to disk or network when requested to do so. You need to set at least one metrics per-
sister on the manager and then register metrics from various places in your application.
The MetricsManager also supports SimpleJmx annotations which allow you to publish the
metrics and view them via JMX.

MetricsManager metricsManager = new MetricsManager();

2.3 Using a Metrics Persister

Once you have created your MetricsManager you should set metrics persister(s) on it.
Metrics persisters are the classes which are responsible for saving the metrics information
to disk, cloud-service, or other archive so they can be reported on and stored for later use.

Persisters implement either the MetricValuesPersister or MetricDetailsPersister
interfaces. The value persister gets the metric values as a simple Number class. The details
persister provides more extensive information on the metrics such as number of samples,
average, minimum, and maximum values through the MetricValueDetails class.

There are a couple simple persister implementations that some with the library although
they may only be useful as implementation examples;

e LoggingMetricsPersister - Logs metrics and their values to java.util.Logger. This
can be used as an implementation example so you can log metrics to your application’s
primary logging class such as log4j.

e SystemOutMetricsPersister - Prints metrics and their values to System.out.

e TextFileMetricsPersister - Writes metrics and their values to a text-file on the file-
system. This text file can then be imported into some reporting system. It is able to
cleanup old metrics files with the cleanMetricFilesOlderThanMillis(...) method.

There is also an implementation for a persister CloudWatchMetricsPersister that saves
the metrics into Amazon’s AWS CloudWatch service. It requires the aws-java-sdk library
which is an optional dependency.

Persisters are set on the MetricsManager as follows:


http://256.com/sources/simplemetrics/releases/
http://256.com/sources/simplemetrics/releases/
http://repo1.maven.org/maven2/com/j256/simplemetrics/
http://repo1.maven.org/maven2/com/j256/simplemetrics/

Chapter 2: Using SimpleMetrics 4 9 October 2017

// persisters that persist a number per metric
metricsManager.setMetricValuesPersisters(

new MetricDetailsPersister[] { ... };
// persisters that persist metric details
metricsManager.setMetricDetailsPersisters(

new MetricDetailsPersister[] { ... };

2.4 Creating and Registering Metrics

Once you have created your MetricsManager and a persister, you are ready to start
creating and registering metrics with the manager. Metrics are the objects which keep
track of the name of the metric as well as it’s associated value(s). For example, let’s say we
wanted to count the number of web-requests made to our web-server so we can graph it over
time. We might create a metric like the following and register it on the MetricsManager:

ControlledMetricAccum webRequestMetric =
new ControlledMetricAccum("web", "server", "requests",
"number of requests handled by our web-server", null);
metricsManager.registerMetric(webRequestMetric);

Whenever a request cames in, you just have to increment the metric:

// count a web-request
webRequestMetric.increment () ;

The MetricsManager takes care of persisting the value to disk or network and it also
resets the value after it is persisted so the counts per minute (or whatever your persist
frequency is) will be accurate.

There are a couple of different types of metrics that are built into the library.

e ControlledMetricAccum - A metric that accumulates in value. This is used when we
are counting something such as a web-server request or a thrown exception. It supports
increment () and add() methods.

e ControlledMetricValue - A metric whose value can go up or down. This is used, for
example, when we are monitoring how much memory the JVM is using or a cache-hit
percentage. We often use a MetricsUpdater when dealing with values. See Section 2.5
[Using MetricsUpdater]|, page 5.

e ControlledMetricTimer - This metric is useful for tracking how long a particular
operation takes. It has a start () and stop() method which easily records the elapsed
time in milliseconds given that it extends ControlledMetricValue.

e ControlledMetricRatio - This metric separates the numerator from the denominator
to keep good precision when recording ratios. You could track cache hit/miss ratios or
other information with this metric which extends ControlledMetricValue.

If these metric types don’t fully meet your needs, you can define others that implement
the ControlledMetric interface and probably extend the BaseControlledMetric class.



Chapter 2: Using SimpleMetrics 5 9 October 2017

2.5 Updating Metric Values

In many situations, you may poll a value from another object and update a metric at that
time. The MetricsManager has support for classes that implement the MetricsUpdater
interface that can be registered on the manager. Whenever values are to be persisted, the
MetricsManager will call the configured updaters beforehand so they can calculate or poll
the values for their metrics and update the metrics appropriately.

For example, let’s say you were tracking how much memory your were using in your
system. You would register your memory metric with the MetricsManager and also register
yourself with the MetricsManager as an updater. The MetricsManager will call your
updateMetrics() method which gives you an opportunity to calculate how much memory
your code is using and update the metric with the information.

2.6 Using the Built-In Utilities

There are a couple of built-in utility classes which are useful for applications to utilize.

e SystemMetricsPublisher - Publishes a number of useful bits of information from the
JVM: number of threads, total memory used, maximum memory used, free memory,
current heap size, number of loaded classes, total process CPU time, thread load average
percentage, old-gen memory percentage, process load average percentage.

e FileMetricsPublisher - Reads values from files on the file system that are then
published via metrics. This is used to read numbers from files in the /proc file-system
on Linux. A common file metric that you might want to publish is the number of open
file-descriptors being used by the JVM.

2.7 Publishing Metrics Via JMX

The library uses the SimpleJMX library to allow for easy publishing of metric values
via JMX. It is optional to do so but you can set the JmxServer on the MetricsManager
and metrics will be registered to the JmxServer and publishd into JMX folders. For more
information about SimpleJMX, see the SimpleJMX home page.

2.8 Using With Maven

To use SimpleMetrics with maven, include the following dependency in your ‘pom.xml’

file:

<dependency>
<groupId>com.j256.simplemetrics</groupld>
<artifactId>simplemetrics</artifactId>
<version>1.8</version>

</dependency>


http://256.com/sources/simplejmx/

Chapter 3: Open Source License 6 9 October 2017

3 Open Source License

This document is part of the SimpleMetrics project.

Permission to use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted, provided that this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUEN-
TIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLI-
GENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The author may be contacted via the SimpleMetrics home page.


http://256.com/sources/simplemetrics/

Index of Concepts 7 9 October 2017

Index of Concepts

A metrics persisters ............. ... ... 3
accumulator metric ............... ... ... ..., 4 MetricsManager ............................ L 3
AULROT « o o o oo e 1 MetricValueDetails. ........................... 3
average vallle .. ........oueeiriiireaaan.. 3 MetricValuesPersister ......................... 3

minimum value . ........... ... .. .. ... ....... 3

B

BaseControlledMetric .. ....................... 4 N
number of samples . ............. ... .. 3

C

cloud service ... 3 O

ControlledMetric interface..................... 4 .

ControlledMetricACCUIn . « v v v v oo oo 4 open source license. ........... ... 6

ControlledMetricRatio ........................ 4

ControlledMetricTimer........................ 4

ControlledMetricValue ........................ 4 P

creating Metrics .............ooiiiiiiin, 4 persisting metrics........... ... ... oL 3
pom.xml dependency.......................... 5

D publishing metrics using JMX ................. 5

downloading the jars.......................... 3

Q

G quick start ....... ... 2
getting started............. .. ... L 2

R
H

ratio metric ......... ... 4
how to download the jars...................... 3 registering metrics . ............... ... 4
how to get started ............. ... ... ... ..., 2
howtouse ..........oo i 3
| SAMPLES . .. 3
increment, MetTiC . . ... ovvve e 4 save metrics to disk ......... ... ... 3
introduction . ...............iiiiiii 1 simple metrics........ .. ... 1
SimpleJMX .. ... 3,5
J storing metrics . ........... . i 3
JMX usage. ... 5
JIMXSErVer. .. ..o 5 T
L time tracking . ............. . L 4
HCENSE .« o v oot 6
logging metrics ............ ... ... 3 U
using SimpleMetrics............. ... .. ... 3
managing the metrics ......................... 3 V
Maven, use with . ............................. 5 | tri 4
maximum value............... ... ... ... ....... 3 VAIE MELIIC . v
MetricDetailsPersister......................... 3
MELTICS. o .ot 4 W
metrics baseclass............ ... ... ... ... ... 4

metrics interface............. ... .. L. 4 where to get new jars ......... ... ... .. L. 3



	SimpleMetrics
	Start Using Quickly
	Using SimpleMetrics
	Downloading Jar
	Creating a MetricsManager Instance
	Using a Metrics Persister
	Creating and Registering Metrics
	Updating Metric Values
	Using the Built-In Utilities
	Publishing Metrics Via JMX
	Using With Maven

	Open Source License
	Index of Concepts

