
1

Diskheap Library
Version 1.5.1
March 2002

Gray Watson

2 Diskheap Tutorial

Copyright 2002 by Gray Watson.
Published by Gray Watson
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the chapter entitled “Copying” are
included exactly as in the original, and provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the chapter entitled
“Copying” may be included in a translation approved by the author instead of in the original
English.

Diskheap Library 1

Diskheap Library

The Diskheap library provides functionality similar to the memory functions malloc,
realloc, free, etc. but on disk. With the library you can write simple data structure
storage wrappers for hash tables, trees, virtual file systems, etc.. The library should be
reasonably portable to most Unix systems. Please provide feedback to the author if you
have problems with it.

The package includes the library, configuration scripts, test program, and documentation.
Online documentation as well as the full source is available at URL http://256.com/sources/diskheap/.

My contact information is available on the web page. I can be reached with any questions
or feedback. Please include the version number of the library that you are using and your
machine and operating system types.

Gray Watson.

2 Diskheap Tutorial

Chapter 1: Library Copying and Licensing Conditions 3

1 Library Copying and Licensing Conditions

Copyright 2002 by Gray Watson.
Permission to use, copy, modify, and distribute this software for any purpose and without

fee is hereby granted, provided that the above copyright notice and this permission notice
appear in all copies, and that the name of Gray Watson not be used in advertising or
publicity pertaining to distribution of the document or software without specific, written
prior permission.

Gray Watson makes no representations about the suitability of the software described
herein for any purpose. It is provided “as is” without express or implied warranty.

4 Diskheap Tutorial

Chapter 2: Installation Notes, Defintions, and Sample Code 5

2 Installation Notes, Defintions, and Sample Code

2.1 How to Install the Library

To configure, compile, and install the library, follow these steps carefully.
1. Make sure you have the latest version of the library available from the home page

http://256.com/sources/diskheap/.
2. Type sh ./configure to configure the library. You may want to first examine the

‘config.help’ file for some information about configure. sh ./configure --help lists
the available options to configure. Configure should generate the ‘Makefile’ and con-
figuration files automatically.

3. You may want to examine the ‘Makefile’ and ‘conf.h’ files created by configure to
make sure it did its job correctly.

4. Typing make should be enough to build the ‘libdiskheap.a’ library. If it does not
work and you figure your problem out, please send me some notes so future users can
profit from your experiences.

5. Typing make light should build and run the ‘diskheap_t’ test program through a
set of light trials. By default this will execute ‘diskheap_t’ 5 times – each time will
execute 1000 Diskheap operations in a very random manner. Anal folks can type make

heavy to up the ante. Use diskheap_t --usage for the list of all ‘diskheap_t’ options.
6. Typing make install should install the ‘libdiskheap.a’ library in ‘/usr/local/lib’

and the ‘diskheap.h’ include file in ‘/usr/local/include’. You may have specified a
‘--prefix=PATH’ option to configure in which case ‘/usr/local’ will have been replaced
with ‘PATH’.

2.2 General Memory Terms and Concepts

To programmers, a heap is a bunch (or pile) of memory. Programs can make calls to
allocate some memory from the heap to process a file (for example). When the program is
done with the memory, it can free it back to the heap so that other parts of the program
can use it. Heap memory is most useful when you do not know ahead of time the memory
necessary to complete a task. The file could be large or small and allocating a small static
space wouldn’t be enough to process a large file while allocating a large space might waste
system resources.

This ability to dynamically allocate space so you can perform a task or store a value
is called (drum roll please) dynamic memory. Dynamic memory functions such as malloc,
realloc, free, etc. provide dynamic storage functions for memory inside your application.
The Diskheap library provides dynamic storage functionality similar to the in-memory heap
functions but on disk.

When some space is allocated in the heap, the library returns its location as a block-
number and offset pair of 32-bit unsigned integers. Both the block-number and the offset

6 Diskheap Tutorial

must be provided to retrieval, update, delete, and other functions to reference this space in
the future.

2.3 Small Sample of Code Showing Usage of the Library

Below is a simple example of what you can do with the library. Please note that although
it gives you some idea about the basic functionality of the library it is not really doing
something useful.

main()
{

diskheap_t *diskheap_p;
unsigned int block_n, offset, size;
char *str_p;
int ret;

/* create a new diskheap file called ’heap’ */
diskheap_p = diskheap_create("heap", 0, 0, 0, 0, 0L);

/*
* Store the string ’hello there’ (size 12 bytes) in the heap.
* The variables block_n and offset get set with the location
* of the string.
*/
ret = diskheap_store(diskheap_p, "hello there", 12, 0, &block_n,

&offset);
/* ret should be checked against DISKHEAP_ERROR_NONE */

/*
* Update the ’hello there’ string and replace with ’hello
* there again’. You pass in the block_n and offset variables
* so the heap library can locate the ’hello there’ string and
* they are set with the location of the new string.
*/
ret = diskheap_update(diskheap_p, "hello there again", 18, 0, block_n,

offset, 0, &block_n, &offset, 0L, 0L);
/* ret should be checked against DISKHEAP_ERROR_NONE */

/*
* Lookup the block-number and offset in the heap. This
* returns an allocated buffer of memory containing the string
* while the size variable is set with its length.
*/
str_p = diskheap_retrieve(diskheap_p, block_n, offset, &size, 0L,

&ret);
/* str_p should be checked against NULL */

printf("String ’%s’ (size %u) is at block #%u, offset %u\n",

Chapter 2: Installation Notes, Defintions, and Sample Code 7

str_p, size, block_n, offset);
free(str_p);

}

2.4 Some Ideas on How to Utilize the Library

This library was initially designed to provide the storage substrate for a high performance
disk hash table library which I will be writing soon. It has been on my mind for some time
however as I’ve pondered various projects which need underlying disk functionality. Flat
files work efficiently for many applications however as soon as a program is adding, removing,
resizing, updating, etc. transactions to any great degree, the Diskheap library should be
considered.

Some ideas for using the library include tree structures, linked lists, skip lists, and virtual
file systems. I encourage you to send me either projects where you have used the library or
ideas for usage.

8 Diskheap Tutorial

Chapter 3: List of functions provided by the library. 9

3 List of functions provided by the library.

The functions listed here are for learning purposes only and will not be as up to date as
the ‘diskheap.h’ header file. If you are writing your program, I’d encourage you to use it
as a reference. All of the information in these function lists should be in the header file as
well.

3.1 Standard Functions such as Open, Close, Store, and
Retrieve.

3.1.1 diskheap create – Create a new diskheap file

Function
diskheap t *diskheap create(const char *file, const unsigned int flags, const unsigned
int block size, const unsigned int heap type, const unsigned int open mode, int *er-
ror p)

Usage: diskheap_p = diskheap_create("stuff.dh", 0, 0 /* use default block-
size */, 0 /* no heap type specified */, 0644, &ret /* error code */);

This function creates a brand new diskheap file when the file has not existed before.
It takes arguments similar to the open system call along with the heap-type which can be
used by the caller to identify the contents of the heap.

3.1.2 diskheap open – Open an existing diskheap file

Function
diskheap t *diskheap open(const char *file, const unsigned int flags, unsigned int
*heap type p, int *error p)

Usage: diskheap_p = diskheap_open("stuff.dh", 0 /* no flags */, 0L /* don’t
want the type */, &ret /* error code */);

This function opens a Diskheap file that was created beforehand with diskheap_create.
It takes a pointer to the heap-type variable which will be set to the number passed to
diskheap_create.

3.1.3 diskheap close – Close a diskheap structure

Function
int diskheap close(diskheap t *diskheap p)

10 Diskheap Tutorial

Usage: ret = diskheap_close(diskheap_p);

This function closes a previously created or opened diskheap structure. It flushes any
outstanding I/O, closes the file descriptor, and frees the memory in the structure. It will
return DISKHEAP ERROR NONE if it succeeds otherwise an error code.

3.1.4 diskheap store – Store a buffer of bytes in the heap

Function
int diskheap store(diskheap t *diskheap p, const void *buffer, const unsigned int
user size, const unsigned int user type, unsigned int *block num p, unsigned int *off-
set p)

Usage: ret = diskheap_store(diskheap_p, "hello there", 11 /* size of string
/, 0 / no type specified */, &block_num, &offset);

This function stores a buffer of bytes into the diskheap returning the block-number and
offset location where it was written. You will need to record the block-number and offset
location information somewhere so you can retrieve or delete this space from the heap later.
It will return DISKHEAP ERROR NONE if it succeeds otherwise an error code.

3.1.5 diskheap retrieve – Retrieve a previously stored buffer

Function
void *diskheap retrieve(diskheap t *diskheap p, const unsigned int block num, const
unsigned int offset, unsigned int *size p, unsigned int *type p, int *error p);

Usage: buf_p = diskheap_retrieve(diskheap_p, block_num, offset, &size, &type_
code, &ret);

This function looks up a block-number and offset location and allocates and returns a
dynamic memory buffer with its contents. It passes back the size of the buffer in a size
argument and the type that was passed to diskheap_store in a type argument. It will
return 0L on an error and set the error code argument.

NOTE : you must deallocate the returned buffer with a call to free() at a later time.
To use a static buffer instead, see diskheap_retrieve_to_buf.

3.1.6 diskheap retrieve to buf – Retrieve into a fixed buffer.

Function
int diskheap retrieve to buf(diskheap t * diskheap p, const unsigned int block num,
const unsigned int offset, void *buffer, const unsigned int max read size, unsigned int
* size p, unsigned int * type p);

Chapter 3: List of functions provided by the library. 11

Usage: ret = diskheap_retrieve_to_buf(diskheap_p, block_num, buffer, 1024
/* buffer size */, offset, &size, &type_code, &ret);

This is the same as the diskheap_retrieve function but instead of allocating a buffer,
it will use the buffer that it is passed. You can use fixed sized buffers that do not have to
be allocated or freed with this function. Also, if you limit the size of the buffer, you can
read in the first couple of bytes from it without reading in the entire stored entity. It will
return DISKHEAP ERROR NONE if it succeeds otherwise an error code.

3.1.7 diskheap update – Update a stored buffer with new data.

Function
int diskheap update(diskheap t * diskheap p, const void *new buffer, const unsigned
int new size, const unsigned int new type, const unsigned int old block num, const
unsigned int old offset, const int safer b, unsigned int * block num p, unsigned int *
offset p, unsigned int * old size p, unsigned int * old type p);

Usage: ret = diskheap_update(diskheap_p, "new string", 10 /* size of string
/, 0 / no type specified */, block_num, offset, 1 /* safer flag */, &new_block_
num, &new_offset, &old_size, &old_type);

This function replaces a stored item with a new item. You specify the new item’s size and
type and the block-number and offset location of the old item. It will return the new location
of the new item and the size and type of the old item. This basically does a diskheap_
delete and a diskheap_store is that order but if you specify 1 for the safer flag, then it
will do the store first and then the delete. It will return DISKHEAP ERROR NONE if it
succeeds otherwise an error code.

3.1.8 diskheap delete – Remove a store buffer from the heap.

Function
int diskheap delete(diskheap t * diskheap p, const unsigned int block num, const un-
signed int offset, unsigned int * user size p, unsigned int * user type p);

Usage: ret = diskheap_update(diskheap_p, block_num, offset, &size, &type);

This function deletes a previously stored item from the heap. You specify the old
item’s block-number and offset location and it passes back its size and type. It will re-
turn DISKHEAP ERROR NONE if it succeeds otherwise an error code.

3.2 Administrative Functions

The following administrative functions tune some of the internal settings and should not
be necessary to call unless you are an experienced Diskheap programmer.

12 Diskheap Tutorial

3.2.1 diskheap set free space – Adjust Space for Free Information

Function
int diskheap set free space(diskheap t * diskheap p, const unsigned int free space);

Usage: ret = diskheap_set_free_space(diskheap_p, 10240000);

This function sets the amount of disk space to reserve for free-space information. The
default is currently 1mb which should be able to store more than 150,000 free slots in the
file. Each "free slot" represents a block-number and size (in blocks) of a free area in the
diskheap. Contiguous free space is combined so each free area is bounded by allocated areas.
It will return DISKHEAP ERROR NONE if it succeeds otherwise an error code.

Free slots which cannot be accounted for in this area will not be stored and may be lost
however the default settings should make this a rare occurrence.

Note: this call has to be made immediately following the call to diskheap_create and
no later. Once the file has been created, it cannot be adjusted.

3.2.2 diskheap set sync often – When to Sync Administrative
Information

Function
int diskheap set sync often(diskheap t * diskheap p, const int sync header, const int
sync free);

Usage: ret = diskheap_set_sync_often(diskheap_p, 10000, 10000);

This function sets how many Diskheap transactions must occur before the header and
free-list administrative information should be written to disk. This administrative infor-
mation needs to be up-to-date and should be updated every once in a while in case your
program exits unexpectantly and does not close the Diskheap properly. You can set either
argument to 0 to have the sync never happen unless you call the diskheap_sync_header
and diskheap_sync_free_list functions. It will return DISKHEAP ERROR NONE if it
succeeds otherwise an error code.

3.2.3 diskheap sync header – Sync Administrative Header
Information

Function
int diskheap sync header(diskheap t * diskheap p);

Usage: ret = diskheap_sync_header(diskheap_p);

This function syncs the administrative header information from memory to disk. It will
return DISKHEAP ERROR NONE if it succeeds otherwise an error code.

Chapter 3: List of functions provided by the library. 13

3.2.4 diskheap sync free list – Sync Free-List Information.

Function
int diskheap sync free list(diskheap t * diskheap p);

Usage: ret = diskheap_sync_free_list(diskheap_p);

This function syncs the administrative free-list information from memory to disk. The
free-list records which space in the Diskheap is not currently in use and can be given out to
future store operations. It will return DISKHEAP ERROR NONE if it succeeds otherwise
an error code.

3.3 Functions to Associate String Labels with Locations

Since the diskheap allocations are stored at arbitrary locations in the heap, there is no
way for a program to read from the front of a file to get to administrative information. To
help a library know where to make it’s "first read" from the diskheap, the library provides
the ability to associate locations with a string label. Starting point for an on-disk data
structure.

Examples of usage include associated the label ‘hashstart’ with the location of the
bucket information for a hash table. You could store the location of the first entry in
a linked list with the label ‘liststart’ and the last entry with ‘listend’. If you are
implementing a mini-file system, you could associate the top directory location with the
label ‘root_directory’.

3.3.1 diskheap label set – Associate a label with a diskheap
location.

Function
int diskheap label set(diskheap t * diskheap p, const char *label, const unsigned int
block num, const unsigned int offset, const int overwrite b);

Usage: ret = diskheap_label_set(diskheap_p, "start", block_num, offset, 1 /*
overwrite */);

This function associates a specific block-number and offset location with a string label.
It will return DISKHEAP ERROR NONE if it succeeds otherwise an error code.

3.3.2 diskheap label get – Get the location associated with a
label.

Function
int diskheap label get(diskheap t * diskheap p, const char *label, unsigned int *
block num p, unsigned int * offset p);

14 Diskheap Tutorial

Usage: ret = diskheap_label_get(diskheap_p, "start", &block_num, &offset);

This function gets the block-number and offset location that is associated with a specific
string label. It will return DISKHEAP ERROR NONE if it succeeds otherwise an error
code.

3.3.3 diskheap label get entry – Get a specific entry from the
label array.

Function
int diskheap label get entry(diskheap t * diskheap p, const unsigned int entry n, char
**label p, unsigned int * block num p, unsigned int * offset p);

Usage: ret = diskheap_label_get_entry(diskheap_p, 1 /* entry number */, &label_
p, &block_num, &offset);

There are a certain number (currently 10) of label and location associations stored in
the diskheap header. This function gets a specific entry and returns the label string and the
associated block-number and offset location. It will return DISKHEAP ERROR NONE if
it succeeds otherwise an error code.

NOTE : The label_p string pointer argument must be passed to free to be deallocated.

3.4 Administrative Functions

3.4.1 diskheap linear first – Get the location of first entry in the
heap.

Function
int diskheap linear first(diskheap t * diskheap p, diskheap linear t * linear p);

Usage: ret = diskheap_linear_first(diskheap_p, &linear);

This function starts the linear access operation by setting the block-number and offset
location to the first allocation found in the heap. It will return DISKHEAP ERROR NONE
if it succeeds otherwise an error code including DISKHEAP ERROR NOT FOUND if there
are no entries in the heap.

3.4.2 diskheap linear next – Get the location of next entry in the
heap.

Function
int diskheap linear next(diskheap t * diskheap p, diskheap linear t * linear p);

Chapter 3: List of functions provided by the library. 15

Usage: ret = diskheap_linear_next(diskheap_p, &linear);

This function adjusts the linear structure to reference the next allocation location in the
heap. You can start at any valid location in the heap. It will return DISKHEAP ERROR NONE
if it succeeds otherwise an error code including DISKHEAP ERROR NOT FOUND if there
are no more entries in the heap.

3.5 Miscellaneous Functions

3.5.1 diskheap fsync – Sync the diskheap with disk using fsync.

Function
int diskheap fsync(diskheap t * diskheap p);

Usage: ret = diskheap_fsync(diskheap_p);

This function calls fsync on the file descriptor associated with the Diskheap. It is designed
to make sure that all buffered data gets moved to the disk. See the manual entry for fsync
to determine what this does in reality. This It will return DISKHEAP ERROR NONE if
it succeeds otherwise an error code.

Warning : even if the fsync succeeds, there is no guarantee that if the system would
immediately crash that the diskheap file would not be corrupted.

Warning : on some operating systems, fsync may not be available in which case the
DISKHEAP ERROR OS CAPABLE error code will be returned.

3.5.2 diskheap seed random – Seed the random number generator.

Function
void diskheap seed random(const int seed);

Usage: diskheap_seed_random(time(0L) ^ getpid());

This function seeds the random number generator inside of the diskheap library and sets
a static flag which will not cause any more calls to the random seed routine to be made.
This should be called before any other diskheap calls are made to be effective. It will return
DISKHEAP ERROR NONE if it succeeds otherwise an error code.

Note: this is usually only needed in testing since the library auto seeds the random
number generator the first time a diskheap is opened or created.

16 Diskheap Tutorial

3.5.3 diskheap strerror – Return string equivalent to diskheap
error.

Function
const char *diskheap strerror(const int error);

Usage: printf("diskheap_open failed and returned: %s\n", diskheap_strerror(ret));

This function returns the string version of a Diskheap error codes. It is useful if you
want to log a Diskheap error code.

Chapter 4: Index of Concepts 17

4 Index of Concepts

18 Diskheap Tutorial

A
administrative functions . 11

author . 1

B
basic definitions . 5

building the library . 5

C
compiling the library . 5

conf.h file . 5

configure script . 5

configuring the library . 5

copying . 3

D
diskheap close . 9

diskheap create . 9

diskheap delete . 11

diskheap fsync . 15

diskheap label get . 13

diskheap label get entry . 14

diskheap label set . 13

diskheap linear first . 14

diskheap linear next . 14

diskheap open . 9

diskheap retrieve . 10

diskheap retrieve to buf . 10

diskheap seed random . 15

diskheap set free space . 12

diskheap set sync often. 12

diskheap store . 10

diskheap strerror . 16

diskheap sync free list . 13

diskheap sync header . 12

diskheap t test program . 5

diskheap update . 11

dynamic memory . 5

E
example code . 6

F
first read . 13

free-slot . 12

functions . 9

H
heap definition . 5

I
initial read . 13

installing the library . 5

introduction . 1

L
labels, string . 13

library permissions . 3

license . 3

location, definition . 5

M
making the library . 5

memory definitions . 5

O
overview . 5

P
permissions of the library . 3

S
sample usage . 6

standard functions . 9

string labels . 13

T
testing the library . 5

U
usage ideas . 7

i

Table of Contents

Diskheap Library . 1

1 Library Copying and Licensing Conditions . . 3

2 Installation Notes, Defintions, and Sample
Code. 5
2.1 How to Install the Library . 5
2.2 General Memory Terms and Concepts . 5
2.3 Small Sample of Code Showing Usage of the Library 6
2.4 Some Ideas on How to Utilize the Library 7

3 List of functions provided by the library. 9
3.1 Standard Functions such as Open, Close, Store, and Retrieve.

. 9
3.1.1 diskheap create – Create a new diskheap file 9
3.1.2 diskheap open – Open an existing diskheap file. . . . 9
3.1.3 diskheap close – Close a diskheap structure 9
3.1.4 diskheap store – Store a buffer of bytes in the heap

. 10
3.1.5 diskheap retrieve – Retrieve a previously stored

buffer . 10
3.1.6 diskheap retrieve to buf – Retrieve into a fixed

buffer. 10
3.1.7 diskheap update – Update a stored buffer with new

data. 11
3.1.8 diskheap delete – Remove a store buffer from the

heap. 11
3.2 Administrative Functions . 11

3.2.1 diskheap set free space – Adjust Space for Free
Information . 12

3.2.2 diskheap set sync often – When to Sync
Administrative Information . 12

3.2.3 diskheap sync header – Sync Administrative Header
Information . 12

3.2.4 diskheap sync free list – Sync Free-List Information.
. 13

3.3 Functions to Associate String Labels with Locations 13
3.3.1 diskheap label set – Associate a label with a

diskheap location. 13
3.3.2 diskheap label get – Get the location associated with

a label. 13

ii Diskheap Tutorial

3.3.3 diskheap label get entry – Get a specific entry from
the label array. 14

3.4 Administrative Functions . 14
3.4.1 diskheap linear first – Get the location of first entry

in the heap. 14
3.4.2 diskheap linear next – Get the location of next entry

in the heap. 14
3.5 Miscellaneous Functions . 15

3.5.1 diskheap fsync – Sync the diskheap with disk using
fsync. 15

3.5.2 diskheap seed random – Seed the random number
generator. 15

3.5.3 diskheap strerror – Return string equivalent to
diskheap error. 16

4 Index of Concepts . 17

	Diskheap Library
	Library Copying and Licensing Conditions
	Installation Notes, Defintions, and Sample Code
	How to Install the Library
	General Memory Terms and Concepts
	Small Sample of Code Showing Usage of the Library
	Some Ideas on How to Utilize the Library

	List of functions provided by the library.
	Standard Functions such as Open, Close, Store, and Retrieve.
	diskheap_create -- Create a new diskheap file
	diskheap_open -- Open an existing diskheap file
	diskheap_close -- Close a diskheap structure
	diskheap_store -- Store a buffer of bytes in the heap
	diskheap_retrieve -- Retrieve a previously stored buffer
	diskheap_retrieve_to_buf -- Retrieve into a fixed buffer.
	diskheap_update -- Update a stored buffer with new data.
	diskheap_delete -- Remove a store buffer from the heap.

	Administrative Functions
	diskheap_set_free_space -- Adjust Space for Free Information
	diskheap_set_sync_often -- When to Sync Administrative Information
	diskheap_sync_header -- Sync Administrative Header Information
	diskheap_sync_free_list -- Sync Free-List Information.

	Functions to Associate String Labels with Locations
	diskheap_label_set -- Associate a label with a diskheap location.
	diskheap_label_get -- Get the location associated with a label.
	diskheap_label_get_entry -- Get a specific entry from the label array.

	Administrative Functions
	diskheap_linear_first -- Get the location of first entry in the heap.
	diskheap_linear_next -- Get the location of next entry in the heap.

	Miscellaneous Functions
	diskheap_fsync -- Sync the diskheap with disk using fsync.
	diskheap_seed_random -- Seed the random number generator.
	diskheap_strerror -- Return string equivalent to diskheap error.

	Index of Concepts

