SimpleZip Package

Version 2.2
June 2024

Gray Watson

This manual is licensed by Gray Watson under the Creative Commons Attribution-Share
Alike 3.0 License.

Permission is granted to make and distribute verbatim copies of this manual provided this
license notice and this permission notice are preserved on all copies.

Table of Contents

SimpleZipt e 1
1 Start Using Quickly 2
2 Using SimpleZip........ooviiiiiiiaa.. 3
2.1 Downloading Jar................ i 3

2.2 Reading Zip Files 3

2.2.1 Constructing a ZipFilelnput 3

2.2.2 Reading Zip File Header Entries 3

2.2.3 Reading File Data to Buffer, File, or Stream...... 4

2.2.4 Reading Zip Central-Directory Entries............ 5)

2.3 Writing Zip Files oo 6

2.3.1 Constructing a ZipFileOutput 6

2.3.2 Writing File Header Entries 7

2.3.3 Writing File Data to Buffer, File, or Stream 7

2.3.4 Writing Central-Directory Entries................ 8

2.4 Using With Maven 8

3 Various PartsofaZip File 9
4 Example Code................c.cciii... 10
5 Open Source License...................... 11

Index of Concepts.............oiiiia... 12

SimpleZip 1 19 June 2024

SimpleZip

Version 2.2 — June 2024

This package provides Java classes to read and write Zip files. There are a number of
different libraries that do this (including one built into the JDK) but I've not found any
that gave me precise controls over the Zip internal, persisted data structures. This library
allows you to control the output of all Zip data and should allow you to read and write Zip
files with full precision.

To get started quickly using SimpleZip, see Chapter 1 [Quick Start], page 2. You can
also take a look at the examples section of the document which has various working code
packages. See Chapter 4 [Examples|, page 10. There is also a HTML version of this
documentation. For more information, see the SimpleZip home page.

Gray Watson http://256stuff.com/gray/

http://256stuff.com/sources/simplezip/docs/simplezip.html
http://256stuff.com/sources/simplezip/docs/simplezip.html
https://256stuff.com/sources/simplezip/
http://256stuff.com/gray/

Chapter 1: Start Using Quickly 2 19 June 2024

1 Start Using Quickly

To use SimpleZip you need to do the following. For more information, see Chapter 2
[Using], page 3.

First download SimpleZip from the SimpleZip release page. See Section 2.1 [Download-
ing], page 3. Or enable via maven. See Section 2.4 [Maven], page 8.

To read Zip files, you use the ZipFileInput class. Something like the following where

input is a File or InputStream:

ZipFileInput zipInput = new ZipFileInput(input);

// readFileHeader() will return null when no more files to read

ZipFileHeader header = zipInput.readFileHeader();

// read file data and write to File (can read to buffer or OutputStream)

zipInput.readFileDataToFile(new File(header.getFileName());

// repeat until readFileHeader() returns null

// optionally read all of the directory entries and set permissions

zipInput.readDirectoryFileHeadersAndAssignPermissions();

zipInput.close();

To write Zip files you use the ZipFileOutput class. Something like the following where
input is a File or OutputStream:

ZipFileOutput zipOutput = new ZipFileOutput (output);

// write a file-header to the zip-file
zipOutput.writeFileHeader (
ZipFileHeader.builder () .withFileName ("hello.txt") .build());

// write file data from File (can write buffer or InputStream)
zipOutput.writeFileData(new File("hello.txt"));

// ... repeat until all headers and file-data written
zipOutput.close();

For more extensive instructions, see Chapter 2 [Using|, page 3.

http://256stuff.com/sources/simplezip/releases/

Chapter 2: Using SimpleZip 3 19 June 2024

2 Using SimpleZip

2.1 Downloading Jar

To get started with SimpleZip, you will need to download the jar file. The SimpleZip
release page is the default repository but the jars are also available from the central maven
repository.

The code works with Java 8 or later.

2.2 Reading Zip Files

2.2.1 Constructing a ZipFileInput

The main class that reads in Zip files is ZipFileInput. You can read in Zip data from
a file-path string, File, or read it from an InputStream.

// read a file-path

ZipFileInput zipInput = new ZipFileInput("/tmp/file.zip");
// read a file
ZipFileInput zipInput
// read an InputStream
ZipFileInput zipInput = new ZipFileInput(inputStream);

new ZipFileInput(new File("/tmp/file.zip"));

2.2.2 Reading Zip File Header Entries

Each file stored in a Zip file is preceded by a header record. You must first read in the
header which contains the file-name and other metadata.

ZipFileHeader fileHeader = zipInput.readFileHeader();
The header contains the following information for each file entry:
e format, version needed to decode
e general-purpose flags
e compression method
e last modified time
e last modified date
e crc32 checksum
e compressed size
e uncompressed size
e file-name bytes

e extra field metadata bytes

http://256stuff.com/sources/simplezip/releases/
http://256stuff.com/sources/simplezip/releases/
http://repo1.maven.org/maven2/com/j256/simplezip/
http://repo1.maven.org/maven2/com/j256/simplezip/

Chapter 2: Using SimpleZip 4 19 June 2024

The SimpleZip class representing the file-headser is ZipFileHeader.java.

If the cre32, compressed size, or uncompressed size fields are 0 then a data-descriptor
will be written after the file-data. See [Data Descriptor]|, page 4.

Immediately following the file-header is the file-data. If there are no more files to be
read then readFileHeader () will return null.

2.2.3 Reading File Data to Buffer, File, or Stream

After reading the header, you can then read in the file data. You can have the
ZipFileInput read the file-data and write the bytes to a file-path string, File, or to an
OutputStream.

// read data and write to file output-path, typically from header
zipInput.readFileDataToFile(fileHeader.getFileName());

// or to a file directly

zipInput.readFileDataToFile(new File(fileHeader.getFileName()));
// or to an output stream, such as

ByteArrayOutputStream baos = new ByteArrayOutputStream();
zipInput.readFileData(baos);

You can also have ZipFileInput read file data as a series of buffers so you can stream
large files. You should call readFileDataPart(...) until it returns EOF (-1).

byte[] buffer = new byte[4096];
while (true) {
// can also read at offset and length
int numRead = zipInput.readFileDataPart(buffer);
if (numRead < 0) { break; }
// process bytes in the buffer

}

By default you will be reading the decoded (i.e. decompressed) bytes. You can also read
the raw bytes, without conversion, using similar read methods with "raw" in the name.

// read _raw_ file data and write to file output-path
ByteArrayOutputStream baos = new ByteArrayOutputStream();
zipInput.readRawFileData(baos);

If you would like to stream the file-data out of the Zip file, you can open up an
InputStream on the file-data either in encoded or raw mode. Calls to read() on the
InputStream turn around and call the read methods on the ZipFileInput.

// reading from input stream calls thru to zipInput.readFileDataPart()
// or zipInput.readRawFileData() methods
InputStream inputStream =
zipInput.openFileDataInputStream(false /* not raw */);
}

Opening an input-stream allows you to read a Zip file from within another Zip file — or
a jar within a war, etc..

Once all of the data has been read for a particular file, there may be a
ZipDataDescriptor entry written after the file data. This entry is read automatically by

https://256stuff.com/sources/simplezip/javadoc/simplezip/com/j256/simplezip/format/ZipFileHeader.html

Chapter 2: Using SimpleZip 5 19 June 2024

the ZipFileInput. This descriptor is necessary in case the Zip file does not have the size
or checksum/crc information at the start of the Zip file entry. See [File Buffering], page 6.

// return data-descriptor after file-data was read or null if none
ZipDataDescriptor dataDesc = zipInput.getCurrentDataDescriptor();

The descriptor holds the following information and is represented in SimpleZip by the
class ZipDataDescriptor.java.

e crc32 checksum
e compressed size
e uncompressed size

Once all of the data has been read for a particular file and the optional descriptor has
been read, you can then read the next header. See Section 2.2.2 [Read File Headers|, page 3.

2.2.4 Reading Zip Central-Directory Entries

After all of the file headers and data in the Zip data, there are a series of central-directory
entries written at the end of the Zip file which record extra information about each of the
files and also provide the locations of the file-headers and data inside of the Zip file. You
can read these entries if you would like.

// return next central-directory entry or null if none
ZipCentralDirectoryFileEntry directoryEntry =
zipInput.readDirectoryFileEntry() ;

The central-directory file entries hold the following information for each file in the Zip.
Some of the fields are duplicates of the fields in the file-header. The entries are represented
by the class ZipCentralDirectoryFileEntry.java.

e format, version that wrote the entry
e format, version needed to decode
e general-purpose flags

e compression method

e last modified time

e last modified date

e crc32 checksum

e compressed size

e uncompressed size

e disk number start

e internal file attributes

e external file attributes

e relative offset of local header

e file-name bytes

e extra field metadata bytes

e comment bytes

https://256stuff.com/sources/simplezip/javadoc/simplezip/com/j256/simplezip/format/ZipDataDescriptor.html
https://256stuff.com/sources/simplezip/javadoc/simplezip/com/j256/simplezip/format/ZipCentralDirectoryFileEntry.html

Chapter 2: Using SimpleZip 6 19 June 2024

If you have been reading file data directly out to disk using the zipInput.readFileData(File)]]

method, you can modify the permissions on the file from the file-entry’s using something
like the following.

// read in a directory entry

directoryEntry = zipInput.readDirectoryFileEntry();

// assign file permissions according to previous entry
zipInput.assignDirectoryFileEntryPermissions(directoryEntry) ;

Once the zipInput.readDirectoryFileHeader () returns null then you are at the very
end of the zip-file where there is some end information that can be read.

// read the end of entry of the zip-file
CentralDirectoryEnd directoryEnd = zipInput.readDirectoryEnd();

The end entry holds the following information.
e disk number
e disk number start
e num records on disk
e num records total
e directory size
e directory offset

e comment bytes

The SimpleZip class representing a central-directory end is ZipCentralDirectoryEnd.java.

2.3 Writing Zip Files

2.3.1 Constructing a ZipFileOutput

The main class that reads in Zip files is ZipFileOutput. You can write Zip data to a
File, file-path string, or stream it out via an OutputStream.

// write to a file-path

ZipFileOutput zipOutput = new ZipFileOutput("/tmp/file.zip");

// write to a file

ZipFileOutput zipOutput
new ZipFileOutput(new File("/tmp/file.zip"));

// write to an OutputStream

ZipFileOutput zipOutput = new ZipFileOutput (outputStream);

The Zip file data starts with a file-header which contains (among other things) the
compressed-size and checksum information that may not be known ahead of time. For files
that are being deflated, these fields can be left as 0 in which case ZipFileOutput will write
out a ZipDataDescriptor after the file data.

However, you can also turn on the buffering the file-data so we can calculate the
compressed-size and crc checksum information beforehand, writing out a file-header with
the size and checksum information filled in, removing the need for a ZipDataDescriptor.

https://256stuff.com/sources/simplezip/javadoc/simplezip/com/j256/simplezip/format/ZipCentralDirectoryEnd.html

Chapter 2: Using SimpleZip 7 19 June 2024

// turn on buffering
zipOutput.enableFileBuffering (1024 * 1024 /* maxSizeBuffered */,
100 * 1024 /* maxSizeInMemory */) ;

See the Javadocs for the enableFileBuffering(...) method for more information.

2.3.2 Writing File Header Entries

File headers immediately precede the file-data in a Zip. You need to first create a
ZipFileHeader using the ZipFileHeader.Builder class.

// build our header by setting fields with with...() and set...Q)
ZipFileHeader fileHeader = ZipFileHeader.builder ()
.withFileName("hello.txt")

.withGeneralPurposeFlags (GeneralPurposeFlag.DEFLATING_MAXIMUM)
.withLastModifiedDateTime (LocalDateTime.now())

.build();

// write the header to the zip output

zipOutput.writeFileHeader (fileHeader) ;

Even though the method is writeFileHeader(...), the code may not write anything
to disk immediately depending if buffering is enabled. Immediately after the header as been
written, you should start writing the file-data.

2.3.3 Writing File Data to Buffer, File, or Stream

After writing the header you then write the file data. You can read in bytes to be written
to the Zip file data from a file-path string, File, or stream it in via an InputStream.

// write bytes from file in specified path to the zip output
zipOutput.writeFileData("file.txt");

// write bytes from file to the zip output
zipOutput.writeFileData(new File("file.txt");

// stream bytes from an inputStream to the zip output
zipOutput.writeFileData(inputStream) ;

You can also have ZipFileOutput write file data from a series of buffers. You will need
to call finishFileData() after all of the data is written.

// can also write at offset and length
zipOutput.writeFileDataPart (buffer);
zipOutput.writeFileDataPart (buffer) ;

// ... repeat until all bytes written

// after all bytes written you must call finish
zipOutput.finishFileData();

By default ZipFileOutput will take your bytes and write them to the Zip file encoded
(i.e. deflate/comopress). You can also write the raw bytes without conversion using similar
write methods with "raw" in the name.

// write _raw_ file data from the file specified by output-path
zipInput.writeRawFileData("file.txt");

https://256stuff.com/sources/simplezip/javadoc/simplezip/com/j256/simplezip/ZipFileOutput.html#enableFileBuffering-int-int-

Chapter 2: Using SimpleZip 8 19 June 2024

If you would like to stream the file-data into the Zip file, you can open up an
OutputStream for the file-data either in encoded or raw mode. Calls to write() on the
OutputStream turn around and call the write methods on the ZipFileOutput.

// writing to output stream calls thru to zipOutput.writeFileDataPart()
// or zipOutput.writeRawFileData() methods
QutputStream outputStream =

zipOutput.openFileDataOutputStream(false /* not raw */);

Opening an output-stream allows you to write a Zip file from within another Zip file —
or a jar within a war, etc..

Once all of the data has been written for a particular file, the ZipFileOutput may
automatically determine that it needs to write a ZipDataDescriptor entry with the sizes
and crc checksum information.

2.3.4 Writing Central-Directory Entries

By default the ZipFileOutput will record the ZipFileHeader entries that have been
written to the Zip output so they can be written out as the central-directory file-entries at
the end of the Zip data. While you are writing each file, you have the option to associate
more information with the file that will be written in each file-entry.

// add information to the file header that was just written that
// it is a text-file

zipOutput.addDirectoryFileInfo(
ZipCentralDirectoryFileInfo.builder () .withTextFile(true) .build());

There are a number of other fields that can be written. See the javadocs for the ZipCen-
tralDirectoryFilelnfo for more information.
At the very end of the Zip file the ZipFileOutput will automatically

write the ZipCentralDirectoryEnd information. It will use fields from the
ZipCentralDirectoryFileInfo as well to write out the fields.

2.4 Using With Maven

To use SimpleZip with maven, include the following dependency in your ‘pom.xml’ file:

<dependency>
<groupId>com. j256.simplezip</groupld>
<artifactId>simplezip</artifactId>
<version>2.2</version>

</dependency>

https://256stuff.com/sources/simplezip/javadoc/simplezip/com/j256/simplezip/format/ZipCentralDirectoryFileInfo.html
https://256stuff.com/sources/simplezip/javadoc/simplezip/com/j256/simplezip/format/ZipCentralDirectoryFileInfo.html

Chapter 3: Various Parts of a Zip File 9 19 June 2024

3 Various Parts of a Zip File

A Zip file is made up of the following pieces of information.
1. file information (0 or multiple)
a. file header, see ZipFileHeader.java
file-name
flags
compressed size
uncompressed size

checksum

b. file data (encoded bytes)
c. optional data-descriptor, either in standard or Zip64 format, see ZipDataDescrip-
tor.java
compressed size
uncompressed size
checksum
2. central-directory file entries (0 or multiple), see ZipCentralDirectoryFileEntry.java
file-name
file offset
internal and external attributes

file comment

3. optional Zip64 end, see Zip64CentralDirectoryEnd.java
version made

version needed

extensible data
4. optional Zip64 end locator, see Zip64CentralDirectoryEndLocator.java
disk number
disk number start
end offset
number of disks
5. central-directory end (summary information), see ZipCentralDirectoryEnd.java
number records
central-directory offset

comment

https://256stuff.com/sources/simplezip/javadoc/simplezip/com/j256/simplezip/format/ZipFileHeader.html
https://256stuff.com/sources/simplezip/javadoc/simplezip/com/j256/simplezip/format/ZipDataDescriptor.html
https://256stuff.com/sources/simplezip/javadoc/simplezip/com/j256/simplezip/format/ZipDataDescriptor.html
https://256stuff.com/sources/simplezip/javadoc/simplezip/com/j256/simplezip/format/ZipCentralDirectoryFileEntry.html
https://256stuff.com/sources/simplezip/javadoc/simplezip/com/j256/simplezip/format/Zip64CentralDirectoryEnd.html
https://256stuff.com/sources/simplezip/javadoc/simplezip/com/j256/simplezip/format/Zip64CentralDirectoryEndLocator.html
https://256stuff.com/sources/simplezip/javadoc/simplezip/com/j256/simplezip/format/ZipCentralDirectoryEnd.html

Chapter 4: Example Code 10 19 June 2024

4 Example Code

Here is some example code to help you get going with SimpleZip. I often find that code
is the best documentation of how to get something working. Please feel free to suggest
additional example packages for inclusion here. Source code submissions are welcome as
long as you don’t get piqued if we don’t chose your’s.

e SimpleZipOutput.java
This example writes out a Zip file with a file, a directory, and a file inside of that
directory. See the source code.

e ZipFileCopy.java
This example reads in a Zip file using ZipFileInput and writes it out with ZipFileOutput

while hopefully not changing any of the internal structures. Please report a Zip that
doesn’t get copied perfectly with this. See the source code.

e ZipFileCopy.java
This example reads in a Zip file and spits out the details about the file in excruciating
detail. See the source code.

http://256stuff.com/sources/simplezip/docs/example-simple
http://256stuff.com/sources/simplezip/docs/example-copy
http://256stuff.com/sources/simplezip/docs/example-info

Chapter 5: Open Source License 11 19 June 2024

5 Open Source License

This document is part of the SimpleZip project.
Copyright 2024, Gray Watson

Permission to use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted, provided that this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR, CONSEQUEN-
TIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLI-
GENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The author may be contacted via the SimpleZip home page.

http://256stuff.com/sources/simplezip/

Index of Concepts

Index of Concepts

author 1
avoiding data descriptor....................... 6
buffered filedata.............................. 6
central-directory end, reading 6
central-directory end, writing 8
central-directory entries, reading 5
central-directory entries, writing 8
code examples................ i 10
copy zip file, example 10
data descriptor........... 4,8
data descriptor, avoiding 6
downloading the jars.......................... 3
example, zip filecopy 10
examples of code oL 10
examples, simple........... 2
external file attributes................. 5
file attributes, external 5
file attributes, internal, 5
file data, buffering 6
file header........... 3
getting started oLl 2
how to download the jars...................... 3
how to get started 2
howtouse 3
internal file attributes......................... 5
introduction................. ... 1
license 11

12

19 June 2024

M

Maven, use with 8
N

no data descriptor L 6
open source license. 11
P

pom.xml dependency.......................... 8
read from InputStream........................ 7
readtoFile..........., 4,7
read to OutputStream......................... 4
read zip filedata................. 4
read zip files...... 3
read Zip files 3
read zip within zip................... 4
simple examples o 2
simple zZip ... 1
simple zip output example.................... 10
using SimpleZip ... 3
where to get new jars 3
write zip filedata............................. 7
write zip file header.......... 7
write zip files....... ... 6
write Zip files......... ... 6
write zip within zip, 8
Z

zip data end, reading 6, 8
zipfiledata........... 4,7
zip file header 3
zip file header, writing 7
zip file info example....... oo 10
zip within zip, reading 4
zip within zip, writing......................... 8
ZipFileHeader 3
ZipFilelnput........ 3
ZipFileOutput 6

	SimpleZip
	Start Using Quickly
	Using SimpleZip
	Downloading Jar
	Reading Zip Files
	Constructing a ZipFileInput
	Reading Zip File Header Entries
	Reading File Data to Buffer, File, or Stream
	Reading Zip Central-Directory Entries

	Writing Zip Files
	Constructing a ZipFileOutput
	Writing File Header Entries
	Writing File Data to Buffer, File, or Stream
	Writing Central-Directory Entries

	Using With Maven

	Various Parts of a Zip File
	Example Code
	Open Source License
	Index of Concepts

