This document describes in detail the definition of the Graphics Interchange Format. This document is intended as a programming reference; it is recommended that the entire document be read carefully before programming, because of the interdependence of the various parts. There is an individual section for each of the Format blocks. Within each section, the sub-section labeled Required Version refers to the version number that an encoder will have to use if the corresponding block is used in the Data Stream. Within each section, a diagram describes the individual fields in the block; the diagrams are drawn vertically; top bytes in the diagram appear first in the Data Stream. Bits within a byte are drawn most significant on the left end. Multi-byte numeric fields are ordered Least Significant Byte first. Numeric constants are represented as Hexadecimal numbers, preceded by "0x". Bit fields within a byte are described in order from most significant bits to least significant bits.
The Graphics Interchange Format(sm) defines a protocol intended for the on-line transmission and interchange of raster graphic data in a way that is independent of the hardware used in their creation or display.
The Graphics Interchange Format is defined in terms of blocks and sub-blocks which contain relevant parameters and data used in the reproduction of a graphic. A GIF Data Stream is a sequence of protocol blocks and sub-blocks representing a collection of graphics. In general, the graphics in a Data Stream are assumed to be related to some degree, and to share some control information; it is recommended that encoders attempt to group together related graphics in order to minimize hardware changes during processing and to minimize control information overhead. For the same reason, unrelated graphics or graphics which require resetting hardware parameters should be encoded separately to the extent possible.
A Data Stream may originate locally, as when read from a file, or it may originate remotely, as when transmitted over a data communications line. The Format is defined with the assumption that an error-free Transport Level Protocol is used for communications; the Format makes no provisions for error-detection and error-correction.
The GIF Data Stream must be interpreted in context, that is, the application program must rely on information external to the Data Stream to invoke the decoder process.
The version number in the Header of a Data Stream is intended to identify the minimum set of capabilities required of a decoder in order to fully process the Data Stream. An encoder should use the earliest possible version number that includes all the blocks used in the Data Stream. Within each block section in this document, there is an entry labeled Required Version which specifies the earliest version number that includes the corresponding block. The encoder should make every attempt to use the earliest version number covering all the blocks in the Data Stream; the unnecessary use of later version numbers will hinder processing by some decoders.
The Encoder is the program used to create a GIF Data Stream. From raster data and other information, the encoder produces the necessary control and data blocks needed for reproducing the original graphics.
The encoder has the following primary responsibilities.
Ensure encoding of the graphics in such a way that the decoding process is optimized. Avoid redundant information as much as possible.
To the extent possible, avoid grouping graphics which might require resetting hardware parameters during the decoding process.
Set to zero (off) each of the bits of each and every field designated as reserved. Note that some fields in the Logical Screen Descriptor and the Image Descriptor were reserved under Version 87a, but are used under version 89a.
The Decoder is the program used to process a GIF Data Stream. It processes the Data Stream sequentially, parsing the various blocks and sub-blocks, using the control information to set hardware and process parameters and interpreting the data to render the graphics.
The decoder has the following primary responsibilities.
An encoder or a decoder is said to comply with a given version of the Graphics Interchange Format if and only if it fully conforms with and correctly implements the definition of the standard associated with that version. An encoder or a decoder may be compliant with a given version number and not compliant with some subsequent version.
Each block section in this document contains an entry labeled Recommendation; this section lists a set of recommendations intended to guide and organize the use of the particular blocks. Such recommendations are geared towards making the functions of encoders and decoders more efficient, as well as making optimal use of the communications bandwidth. It is advised that these recommendations be followed.
The GIF format utilizes color tables to render raster-based graphics. A color table can have one of two different scopes: global or local. A Global Color Table is used by all those graphics in the Data Stream which do not have a Local Color Table associated with them. The scope of the Global Color Table is the entire Data Stream. A Local Color Table is always associated with the graphic that immediately follows it; the scope of a Local Color Table is limited to that single graphic. A Local Color Table supersedes a Global Color Table, that is, if a Data Stream contains a Global Color Table, and an image has a Local Color Table associated with it, the decoder must save the Global Color Table, use the Local Color Table to render the image, and then restore the Global Color Table. Both types of color tables are optional, making it possible for a Data Stream to contain numerous graphics without a color table at all. For this reason, it is recommended that the decoder save the last Global Color Table used until another Global Color Table is encountered. In this way, a Data Stream which does not contain either a Global Color Table or a Local Color Table may be processed using the last Global Color Table saved. If a Global Color Table from a previous Stream is used, that table becomes the Global Color Table of the present Stream. This is intended to reduce the overhead incurred by color tables. In particular, it is recommended that an encoder use only one Global Color Table if all the images in related Data Streams can be rendered with the same table. If no color table is available at all, the decoder is free to use a system color table or a table of its own. In that case, the decoder may use a color table with as many colors as its hardware is able to support; it is recommended that such a table have black and white as its first two entries, so that monochrome images can be rendered adequately.
The Definition of the GIF Format allows for a Data Stream to contain only the Header, the Logical Screen Descriptor, a Global Color Table and the GIF Trailer. Such a Data Stream would be used to load a decoder with a Global Color Table, in preparation for subsequent Data Streams without a color table at all.
Blocks can be classified into three groups : Control, Graphic-Rendering and Special Purpose. Control blocks, such as the Header, the Logical Screen Descriptor, the Graphic Control Extension and the Trailer, contain information used to control the process of the Data Stream or information used in setting hardware parameters. Graphic-Rendering blocks such as the Image Descriptor and the Plain Text Extension contain information and data used to render a graphic on the display device. Special Purpose blocks such as the Comment Extension and the Application Extension are neither used to control the process of the Data Stream nor do they contain information or data used to render a graphic on the display device. With the exception of the Logical Screen Descriptor and the Global Color Table, whose scope is the entire Data Stream, all other Control blocks have a limited scope, restricted to the Graphic-Rendering block that follows them. Special Purpose blocks do not delimit the scope of any Control blocks; Special Purpose blocks are transparent to the decoding process. Graphic-Rendering blocks and extensions are used as scope delimiters for Control blocks and extensions. The labels used to identify labeled blocks fall into three ranges : 0x00-0x7F (0-127) are the Graphic Rendering blocks, excluding the Trailer (0x3B); 0x80-0xF9 (128-249) are the Control blocks; 0xFA-0xFF (250-255) are the Special Purpose blocks. These ranges are defined so that decoders can handle block scope by appropriately identifying block labels, even when the block itself cannot be processed.
The Block Size field in a block, counts the number of bytes remaining in the block, not counting the Block Size field itself, and not counting the Block Terminator, if one is to follow. Blocks other than Data Blocks are intended to be of fixed length; the Block Size field is provided in order to facilitate skipping them, not to allow their size to change in the future. Data blocks and sub-blocks are of variable length to accommodate the amount of data.
As an embedded protocol, GIF may be part of larger application protocols, within which GIF is used to render graphics. In such a case, the application protocol could define a block within which the GIF Data Stream would be contained. The application program would then invoke a GIF decoder upon encountering a block of type GIF. This approach is recommended in favor of using Application Extensions, which become overhead for all other applications that do not process them. Because a GIF Data Stream must be processed in context, the application must rely on some means of identifying the GIF Data Stream outside of the Stream itself.
Free Spam Protection Android ORM Simple Java Zip JMX using HTTP Great Eggnog Recipe